Course: Applied mathematics

« Back
Course title Applied mathematics
Course code KIR/P1AMA
Organizational form of instruction Lecture
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 2
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Prusek Ondřej, Ing. Ph.D.
Course content
Set and its properties, the relationship between points and a set. Function and its properties, overview of basic elementary functions. Numerical sequences, their properties, limit of a sequence. Limit and continuity of a function. Derivation of a function. Applications of differential calculus, L´Hospital´s rule, course of a function. Primitive functions and the indefinite integral. Integration methods. The definite integral. Applications of integral calculus, calculation of area under the curve. Vectors. Matrix. Determinants. Systems of linear algebraic equations, Frobenius theorem, Cramer´s rule.

Learning activities and teaching methods
Monologic (reading, lecture, briefing), Dialogic (discussion, interview, brainstorming)
  • unspecified - 26 hours per semester
  • unspecified - 20 hours per semester
  • unspecified - 4 hours per semester
  • unspecified - 4 hours per semester
  • unspecified - 6 hours per semester
Learning outcomes
The aim of the course is to master fundamentals of mathematical analysis, differential and integral calculus of functions of one variable and of linear algebra.

Prerequisites
The student will be able to solve mathematical exercises in the examined themes and apply mathematical procedures when solving specific realistic tasks.

Assessment methods and criteria
Oral examination, Written examination

Compliance with mandatory 80% attendance at lectures. Successful completion of an oral examination and a written examination.
Recommended literature
  • CABRNOCHOVÁ, R.; PRACHAŘ, O. . Průvodce předmětem Matematika I (první část). Úlohy z logiky, teorie množin a ze základů matematické analýzy.. Univerzita Pardubice, 2003.
  • Cabrnochová, R.; Prachař, O. Průvodce předmětem Matematika I (druhá část). Úlohy z diferencionálního a integrálního počtu funkcí jedné reálné proměnné.. Univerzita Pardubice, 2004.
  • CABRNOCHOVÁ, R.; PRACHAŘ, O. Průvodce předmětem Matematika I (třetí část). Úlohy z lineární algebry, analytické geometrie a z nekonečných řad.. Univerzita Pardubice, 2004.
  • KOLDA, S.; ČERNÁ, M. Matematika - Úvod do lineární algebry a analytické geometrie. Univerzita Pardubice, 2004.
  • MACHAČOVÁ, L. Matematika - Základy diferenciálního a integrálního počtu.. Pardubice : Univerzita Pardubice, 2003. ISBN 80-7194-577-3.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Health Studies Study plan (Version): Radiology Assistant (2014) Category: Health service 1 Recommended year of study:1, Recommended semester: Winter
Faculty: Faculty of Health Studies Study plan (Version): Radiology Assistant (2013) Category: Health service 1 Recommended year of study:1, Recommended semester: Winter