Course description

Course abbreviation: Course name:	KMF/ZNMAF Matrix Algebr	a				Page:	1 / 2	
Academic Year:	2019/2020				Printed:	24.05.2024	15:55	
Department/Unit /	KMF / ZNMAE				Academic Year	2019/2020		
Title	Matrix Algebra				Type of completion	Examination		
Accredited/Credits	Yes, 5 Cred.				Type of completion	Combined		
Number of hours	Lecture 2 [HRS/WEEK] Tutorial 2 [HRS/WEEK]							
Occ/max	Status A	Status B	Status C		Course credit prior to	YES		
Summer semester	0 / -	0 / -	0 / -		Counted into average	YES		
Winter semester	0 / -	0 / -	0 / -		Min. (B+C) students	not determ	ined	
Timetable	No				Repeated registration	NO		
Language of instruction	English				Semester taught	Winter, Su	ımmer	
Optional course	Yes				Internship duration	0		
Evaluation scale	A B C D E F				Ev. sc. – cred.	S N		
No. of hours of on-premise								
Auto acc. of credit	No							
Periodicity	K							
Substituted course	KMF/INMAE	,						
Preclusive courses	N/A							
Prerequisite courses	N/A							
Informally recommended courses		N/A						
Courses depending on this Course		N/A						

Course objectives:

To afford students more remarkable knowledge on vector spaces, matrix theory and their use in practices.

Requirements on student

Credit requirements: active participation in seminars with at most three hours absent, and at least 50% success in written test. The course is completed by an oral exam; student should demonstrate an active knowledge of predefined topics.

Content

Euclidean vector spaces: orthogonalization, orthogonal and unitary matrices, orthogonal projection, decompositions of matrices and their applications.

Linear mappings of vector spaces: matrix of linear mapping, automorphisms, projections, orthogonal mappings, quotient vector spaces.

Linear operators: similar matrices, minimal and characteristic polynomial, polynomial matrices, Cayley-Hamilton theorem, invariant subspaces, eigen-subspaces, canonical Jordan form and its applications.

Bilinear and quadratic forms.

Prerequisites - other information about course preconditions

Prerequisite for successful mastering of this subject is knowledge of linear algebra within the range the basic course of mathematics.

Competences acquired

Students will obtain survey of the linear algebra which unable them to home study new trends in their professional field in future.

Guarantors and lecturers

- Guarantors: Mgr. Alena Pozdílková, Ph.D. (100%)
- Lecturer: Mgr. Alena Pozdílková, Ph.D. (100%)
- Tutorial lecturer: Mgr. Alena Pozdílková, Ph.D. (100%)

Literature

- Recommended: Halmos, P. R. *Finite-dimensional vector spaces*. New York, 1958.
- Recommended: Friedberg, S.H., Insel, A.J., Spence, L.E. *Linear Algebra*. Prentice Hall, 2003.
- Recommended: Nicholson, K.W. *Linear algebra with aplications*. Washington, 1990.
- Recommended: Gelfand, I. M. Lineární algebra. Praha, 1953.
- Recommended: Abadir, K.M., Magnus, J., R. Matrix Algebra. Cambridge, 2005.
- Recommended: Meyer, C. D. Matrix Analysis and Applied Linear Algebra. SIAM, 2001.

Teaching methods

Monologic (reading, lecture, briefing) Methods of individual activities Skills training

Assessment methods

Written examination Discussion Systematic monitoring

Course is included in study programmes: