Course: Electrical Machines

» List of faculties » DFJ » KEEZ
Course title Electrical Machines
Course code KEEZ/ELMAS
Organizational form of instruction Lecture + Lesson
Level of course unspecified
Year of study not specified
Semester Summer
Number of ECTS credits 4
Language of instruction English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Lettl Jiří, prof. Ing. CSc.
  • Sýkora Petr, Ing.
Course content
Maxwell equations, Hopkinson´s law, Esson´s coefficient, cubage, motor, generator. DC machines, functional principle, constructional implementation, basic equations. Commutation, armature interference and its influence, losses, efficiency. Dynamo separately excited, shunt excited, serious excited, compound excited, characteristics. DC motor separately excited, shunt excited, serious excited, compound excited. Transformer, principle, constructional implementation, signification, using, basic equations. Substitution diagram, phasor diagram, idling, short circuit operation, losses, efficiency. Three-phase transformers, parallel connection, unbalanced consumption, autotransformers. AC machines, turning magnetic field, asynchronous machines, slip, operation modes. Asynchronous machines, principle, constructional implementation, basic equations. Substitution diagram, phasor diagram, idling, short circuit operation, losses, efficiency. Torque characteristic, Kloss´ relation, start, speed control, braking. Synchronous machines, principle, constructional implementation, basic equations. Alternators, synchronous motors, compensator, phasor diagrams, V curves.

Learning activities and teaching methods
Monologic (reading, lecture, briefing)
Learning outcomes
The aim of the course is to elucidate problems of electric machines functional principles, constructional implementation, basic equations, DC motor and dynamo separately excited, shunt excited, serious excited, compound excited characteristics, one-phase and three-phase transformer principles, types, and operating modes, asynchronous and synchronous machines signification, using, operating modes, substitution diagrams, phasor diagrams, torque characteristics, methods of start, speed control, braking.
After the course completion the students are able to implement various types of electric machines such as DC motors and dynamos separately excited, shunt excited, serious excited, compound excited, various types of transformers, asynchronous and synchronous machines. They are able to perform their projection, to apply proper method of start, speed control and braking, to use the knowledge of electric machines application in engineering practice.
Prerequisites
Knowledge of electrical circuit, digital technique, basics of electrical drives.

Assessment methods and criteria
Oral examination

Knowledge of mathematical analysis and circuit theory is necessary.
Recommended literature
  • Crowder Richard. Electric Drives and Electromechanical systems. Elsevier, Oxford, 2006.
  • Leonhard Werner. Control of Electric Drives.. Springer-Verlag, New York, 2001.
  • Sen P. C. Principles of Electric Machines and Power Electronics. John Wiley & Sons, New York, 1997.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester